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Abstract. The matrix element of the electromagnetic current between pion states is calculated in quenched
lattice QCD at a temperature of T = 0.93 Tc. The non-perturbatively improved Sheikholeslami–Wohlert
action is used together with the corresponding O(a) improved vector current. The electromagnetic vertex
function is extracted for pion masses down to 360 MeV and momentum transfers Q2 ≤ 2.7 GeV2.

1 Introduction

The theory governing the strong force, QCD, predicts dis-
tinctive changes in the behavior of hadronic matter when
exposed to extreme conditions, i.e. at high temperature
and/or at high baryon density. It is the aim of large experi-
mental programs to create matter in such an environment
and to study its properties. In order to interpret the ex-
perimental findings, one of the important questions to be
answered is to quantify how properties of hadrons pro-
duced in heavy ion collisions are changed in a hot medium.
In this paper we investigate possible changes in the in-

ternal structure of hadrons at a temperature below the
critical temperature Tc, i.e. we look for precursors of the
phase transition for the pion. More specifically, we use lat-
tice QCD to calculate spatial two- and three-point func-
tions for a pion, to extract the pion ‘form factor’ at finite
temperature.
Finite temperature form factors of the pion have been

considered in the framework of a variety of theoretical ap-
proaches. An increase in the charge radius with increas-
ing temperature was found in the Nambu–Jona Lasinio
model [1]. Dominguez et al. [2] used a finite energy QCD
sum rule to show that the charge radius of the pion in-
creases with T and diverges at some critical temperature.
An extensive study of the pion electromagnetic form fac-
tors at finite T was undertaken by Song and Koch [3] in
the time-like region. Using an effective chiral Lagrangian to
one loop, the form factor at T > 0 was found to be reduced
in magnitude, in particular in the vector meson dominance
region. Similar results were recently obtained by Nicola et
al. [4] who work in chiral perturbation theory to one loop.
They calculated the form factor in the space-like region
and found that the charge radius initially stays constant,
but then increases at higher temperature.
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There have already been several lattice QCD investi-
gations of some properties of a pion embedded in a heat
bath. A recent review of these studies, both quenched and
unquenched, can be found in [5]. Most of the work consid-
ered spatial correlators and extracted the so called ‘screen-
ing masses’ and spatial ‘Bethe–Salpeter wave functions’
of the pion. The general conclusion was that for tempera-
tures below the phase transition temperature, Tc, there are
no significant differences between the finite temperature
‘screening’ mass and the free pion ‘pole’ mass. Further-
more, the ‘Bethe–Salpeter wave functions’ extracted from
spatial two-point correlators at T < Tc were very similar to
those at T = 0. However, as subsequent calculations [6, 7]
of the pion form factor at T = 0 have shown, conclusions
about the internal structure based on these wave functions
obtained from two-point correlators are not very reliable.
We therefore study an additional observable, the three-

point function of the electromagnetic current between pion
states. This enables us to extract the electromagnetic ver-
tex of the pion at T > 0 and to draw direct conclusions
about the internal structure. We do this for a medium
which has vanishing net baryon density and a tempera-
ture of T = 0.93Tc. Our study of the pion vertex function
for space-like photons is the first such investigation of the
spatial structure of a hadron at finite temperature with lat-
tice QCD. For our study we use an O(a) improved Wilson
action, together with the consistently improved vector cur-
rent in order to ensure the absence of O(a) effects in the
matrix element.
In Sect. 2, we first discuss some general features of the

meson form factors at finite temperature, followed by some
technical details in Sect. 3. In Sect. 4, we present the cal-
culation of the pion two-point function and discuss our
results for screeningmass and dispersion relation. The pion
electromagnetic vertex is then extracted from the three-
point function and discussed in detail in Sect. 5. Section 6
contains our summary.



590 J. van der Heide et al.: Electromagnetic vertex function of the pion at T > 0

2 Formalism at T > 0

Temperature is introduced in the path integral formal-
ism by restricting the Euclidean time direction and im-
posing (anti-) periodic boundary conditions. In the lat-
tice approach, the temperature is then defined through
T = (Nτa)

−1. To facilitate the determination of the pion
form factor on the lattice, one has to calculate two observ-
ables. These are the two- and three-point Green’s function
of an interacting quark–antiquark pair, which carries the
quantum numbers of a pion, at large separation. Since at
higher temperatures the temporal direction is rather short,
it becomes difficult to reliably filter out the ground state
from correlators in the τ -direction and we use instead spa-
tial correlators in the z-direction.

2.1 The two-point function

The two-point function is given by

G(x, τ) = 〈φ(x, τ)φ†(0, 0)〉 , (1)

where for definiteness we assume that we are dealing with
a π+ meson,

φ†(x) = ψ̄u(x)γ
5ψd(x) . (2)

In the following, we will suppress all flavor, SU(3) color
and spin indices. We want to study the spatial correlator in
the z-direction,

G̃(z, p̃) =

∫ 1
T

0

dτ

∫
dx

∫
dye−ip̃·x̃G(x, τ) , (3)

where

x̃= (x, y, τ) p̃= (px, py, p4) (4)

denote the three-vector parts of the coordinates and mo-
menta in the so called ‘funny space’ [8]. Due to the periodic
boundary conditions for the pion, p4 is restricted to the
Matsubara frequencies,

p4 = 2πnT ≡ ωn . (5)

In the following we consider only the lowest contribution,
ω0 = 0, since the next mode at ω1 ≈ 1.6 GeV is already
quite heavy.

2.1.1 Dispersion relation and wave function renormalization

The inverse pion propagator in Euclidean momentum
space can be written as

∆−1(p, p4;T ) = p
2+p24+m

2+Π(p2, p4;T ) , (6)

wherem is the bare pion mass, and effects due to the pres-
ence of the heat bath are incorporated into the self energy

Π. In contrast to the situation at T = 0, the propagator can
now depend separately on

p2 = p2⊥+p
2
z and p4 = n ·p . (7)

Here, the four-velocity of the heat bath, nµ, is given by

nµ = (0, 0, 0, 1) . (8)

In terms of the momentum space propagator in (6), the
spatial correlator in the z-direction is given as

G̃(z, p̃) =

∫
dpz
2π
e−ipzz∆(p, p4;T ) . (9)

Its behavior at large z is determined by the poles with the
lowest p2z value of the propagator, (6). For p4 = 0, the poles
occur when the spatial momentum satisfies

p2 =−m2−Π(−m2sc,T , 0;T ) =−m
2
sc,T , (10)

wheremsc,T denotes the temperature dependent screening
mass. For a given value of the transverse momentum p⊥,
the pole in pz is therefore located at pz,0, with

p2z,0 =−E
2
sc(p

2
⊥, 0;T ) , (11)

where we have introduced the screening energy,

Esc(p
2
⊥;T ) =

√
p2⊥+m

2
sc,T . (12)

The state we filter out for large separation z at a given
transverse momentum p⊥ and p4 = 0 is thus the state with
the lowest screening energy, which satisfies the dispersion
relation (10) or (12). This state is in principle different
from the ground state of the pion with the lowest energy.
For simplicity, however, we will refer to the state with the
lowest screening energy as the ‘ground state’.
In order to obtain the wave function renormalization for

this state, we expand the propagator around the pole p2 =
−m2sc,T . Using

Π(p2, 0;T )∼=Π(−m2sc,T , 0;T )

+ (p2+m2sc,T )
∂

∂p2
Π(p2, 0;T )

∣∣∣∣
p2=−m2

sc,T

+ . . . ,

(13)

and (10), one can write the inverse propagator as

∆−1 ∼= (p2+m2sc,T )

×

⎛
⎝1+ ∂

∂p2
Π(p2, 0;T )

∣∣∣∣
p2=−m2

sc,T

+πR(p
2)

⎞
⎠ ,
(14)

where the remainder vanishes at the pole,

πR(−m
2
sc,T ) = 0 . (15)
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Near the pole, we therefore obtain

∆(p, p4 = 0;T ) =
Z

p2⊥+p
2
z+m

2
sc,T

, (16)

where the renormalization constant Z is defined by

Z−1 = 1+
∂

∂p2
Π(p2, 0;T )

∣∣∣∣
p2=−m2

sc,T

. (17)

2.2 The three-point function

The second observable we use is the three-point func-
tion. For the pion, using degenerate quark masses, only
connected diagrams contribute. The quark–antiquark pair
propagates from the source at zi = 0 to the sink at zf . The
photon couples to the propagating quarks at an interme-
diate point z. In the continuum, this function reads in the
notation introduced in (3)

Gµ(zf , z, p̃f , p̃i)

=

∫ 1/T
d3x̃f

∫ 1/T
d3x̃ie

−ip̃f ·(x̃f−x̃)−ip̃i·x̃

×〈φR(x̃f , zf )jµ(x̃, z)φ
†(0̃, 0)〉 , (18)

where jµ is the quark vector current to which the photon
couples. Details of the current will be given in Sect. 3.

2.2.1 Current structure and form factors

Given the four-vectors n, pi and pf , a matrix element of the
electromagnetic current operator has for the pion the gen-
eral Lorentz structure,

Jµ = 〈π(pf )|jµ|π(pi〉)

= eπ{(pi+pf )µF + qµG+nµH} , (19)

where

qµ = (pf −pi)µ (20)

is the photon four-momentum and eπ the pion charge. The
functions F,G, and H are form factors which are func-
tions of the independent scalar variables and are subject to
conditions arising from current conservation or the Ward
identity. In contrast to the situation at T = 0 they can de-
pend on more scalar variables, namely

p2i , p
2
f , n

2, q2, n ·pi, and n ·pf . (21)

The last two scalars amount to p4,i and p4,f . When
calculating the three-point function, (18), we choose to
project out states with transverse momenta of the same

magnitude,

p2⊥,f = p
2
⊥,i = p

2
⊥ . (22)

By choosing large spatial separations of the vertex from
both source and sink and p4 = 0, we filter out the ini-
tial and final pion in the ‘ground state’ which satisfies
the dispersion relation (12). It is therefore easily seen
that the form factors with this choice of kinematics will
only depend on two scalars, the screening mass msc,T
and

Q2 =−q2 = (p⊥,f −p⊥,i)
2 . (23)

In our applications the momentum transfer to the pion,Q2,
is varied by changing the angle between p⊥,i and p⊥,f and
by choosing different values for p2⊥, (22).
Current conservation for matrix elements of the cur-

rent operator between initial and final pion states yields in
general

0 = (p2f −p
2
i )F (m

2
sc,T , Q

2)+ q2G(m2sc,T , Q
2)

+n · (pf −pi)H(m
2
sc,T , Q

2) . (24)

Since for our symmetrical kinematics p2f = p
2
i and n · (pf −

pi) = 0, we see that G must vanish. Furthermore, the
term involving H will not contribute if we consider spa-
tial components of the current. Choosing in particular the
z-component, we obtain for the lattice version of the pion
current

〈π(p⊥,f )|jz |π(p⊥,i)〉lattice

= eπF (Q
2,m2sc,T )

pz,f +pz,i

2
√
pz,f (p2⊥)pz,i(p

2
⊥)

= eπF (Q
2,m2sc,T ) . (25)

As already pointed out in [7], the cancellation of the kine-
matical factor in the last step due to our symmetric choice
of momenta makes the extraction of the form factor F from
the lattice data more reliable.

2.2.2 Effective charge

In comparison to the free pion current at T = 0, there are
two modifications at T > 0. First, the overall renormaliza-
tion constant Z, (17) at finite temperature, might differ
from the corresponding value at T = 0. Secondly, the ver-
tex operator gets modified. At the photon point, where
Q2 = 0 and p⊥,f = p⊥,i, we absorb both effects into an ef-
fective charge eeff,

〈π(p⊥)|jz|π(p⊥)〉 ≡ eeff2pz . (26)

The modification of the vertex can in this case be ob-
tained from the Ward–Takahashi identity for the vertex
operator jµ,

(p′−p)µjµ = eπ{∆
−1(p′, p′4;T )−∆

−1(p, p4;T )} . (27)
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Taking first p̃′ = p̃ and then the limit p′z→ pz, one obtains
at the photon point

jz(Q
2 = 0) = eπ

∂

∂pz
∆−1(p, p4, T )

= 2eπpz

(
1+

∂

∂p2
Π(p2, 0;T )

)
.

When evaluating the matrix element of the vertex operator
jz between states satisfying the dispersion relation (12), we
have

jz(Q
2 = 0)

= 2eπpz

(
1+

∂

∂p2
Π(p2, 0;T )

)∣∣∣∣
p2=−m2

sc,T

= 2eπpzZ
−1 , (28)

where Z was defined in (17). The vertex correction will
thus precisely cancel the wave function renormalization
factor Z, resulting in

eeff = eπ . (29)

Thus, if we use pion states obtained from spatial corre-
lators, the effective charge determined from spatial com-
ponents of the conserved current is the same as the free
charge. This complements the remark in [3], where it
was noticed that the effective charge obtained from the
z-component is different from the one obtained from the
t-component if the same wave function renormalization
constant is used in both cases. This difference is due to the
fact that Lorentz invariance is broken and the self energy
depends separately on p and p4 at T > 0.

3 Technical details

Most practical aspects of our lattice calculations are identi-
cal to the procedures in [7]. We therefore only give a short
summary.
Our calculations were done on a Nσ×Nτ = 323×8 lat-

tice. TheNτ value corresponds to T = 0.93Tc at the chosen
value of β = 6.0. In comparison to [7], the spatial size of
the lattice has been increased from Nσ = 24 at T = 0 to
Nσ = 32 to have the same length in the correlation direc-
tion. We generated O(200) configurations, twice as many
as at T = 0, since we expect an increase in fluctuations in
the vicinity of the phase transition.
To facilitate comparison with the results in [7], we used

the same five κ values,

κ= 0.13230, 0.13330,

0.13380, 0.13430, 0.13480 , (30)

which correspond to pion masses of 360–970MeV1 at T =
0. The action we use is the Sheikholeslami–Wohlert ac-
tion [10] with the non-perturbatively determined [11] value
cSW = 1.7692, which is exact to orderO(a).

1 We use a= 0.105 fm from [9] to set the scale.

In order to obtain matrix elements of the current that
are correct to order O(a), we have to use the appropriate
vector current for the chosen action. This improved vector
current is [12–14]

jIµ = ZV {j
L
µ +acV ∂νTµν} , (31)

where

jLµ = ψ̄(x)γµψ(x) (32)

is the local quark current, and

Tµν = ψ̄(x)σµνψ(x) . (33)

In choosing this structure for jIµ, we have dropped terms
that can be eliminated by the quark equation of motion,
just as at T = 0. This improved current guarantees that
on-shell matrix elements only have O(a2) errors. For com-
parison, we also use the conserved lattice current [15], in
our calculations

jCµ = ψ̄(x)(1−γµ)Uµ(x)ψ(x+ µ̂)

− ψ̄(x+ µ̂)(1+γµ)U
†
µ(x)ψ(x) , (34)

which has O(a) discretization errors away from the for-
ward direction. To enhance the contribution from the pion
ground state at the sink point (x̃f , zf ), we use an extended
operator φR with a suitably chosen inter-quark distance
R. To keep the calculation gauge invariant, the separated
quarks at the sink are connected by gauge links which are
‘fuzzed’ to simulate the tube-like nature of the gluon cloud.
In these steps we follow the scheme developed by Gupta
et al.[16] and Lacock et al. [17]; the fuzzed gluon links at
the pion sink are created with a link/staple mixing of 2 and
a fuzzing level of 4. Fuzzing was performed in all three di-
rections orthogonal to z. As a measure for the effectiveness
of this method, we used the speed with which the effective
screening energy,

Eeffsc,T (z, p̃) = ln
〈G̃R(z, p̃)〉

〈G̃R(z+1, p̃)〉
, (35)

stabilizes for increasing z. We varied the quark separation
R and found that, just as at T = 0, the value R = 3 was
optimal. The same R was also used for the three-point
functions.

4 Results for the two-point function

In order to extract information from the lattice data, the
two-point function, (3), is parameterized, with p4 = 0, as

G̃R(z,p⊥) =
1∑
n=0

√
ZnR(p

2
⊥)Z

n
0 (p

2
⊥)

× e−E
n
sc(p

2
⊥)Nz/2 cosh

[
Ensc(p⊥)

(
Nz

2
− z

)]
, (36)
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where Nz = 32 is the extension of the lattice in the
z-direction. The cosh structure is due to the periodic
boundary conditions in z. The quantities ZnR denote the
matrix elements |〈Ω|φR|n,p⊥〉|2, the overlap between the
trial state φ†R|Ω〉 and the pion state with screening en-
ergy Ensc(p

2
⊥) and momentum p⊥. Since we use smearing

techniques at the sink to suppress higher excited states,
the parameterization can be restricted to two states. For
a given momentum p⊥, the parameters we fit for each state
are thus the screening energy, Ensc, and the product of the
amplitudes, ZnRZ

n
0 , in (36). For the momenta, we choose

p2⊥ = 0, 0.039, 0.077, 0.154, 0.193 , (37)

which are integermultiples of p2min, where pmin =
2π
Nσ
. These

values include the momenta used for our form factor cal-
culation. For each nonzero value of p2⊥ we use several p⊥
with different directions in the {x, y} plane. On the lattice
there is still some rotational symmetry left, and the two-
point function is independent of the direction of the trans-
verse momentum. We therefore average over all momenta
with the same length to increase the stability of the data.
There might still be correlations between different con-

figurations. To deal with these, we obtained all our results
using the jackknife method [19, 20].

4.1 Screening masses and dispersion relation

The results for the screening masses, msc,T , obtained for
p⊥ = 0, are given in Table 1. Also shown in the table are
the free pion masses, mπ, obtained for the same action at
T = 0 in [7]. As can be seen, the screeningmasses agreewith
the corresponding pole masses at zero temperature within
error bars. This confirms earlier work [21, 22], where no sig-
nificantdifferences between screening and zero temperature
polemasseswere found for a πmeson at temperatures below
Tc; similar observations were also made for the ρmeson.
In order to investigate the dispersion relation for the

lattice states, we plot the screening energies as function

Table 1. Fit results at T = 0.93Tc compared to corresponding
data at T = 0

(a) Pion masses
κ msc,T mπ (T = 0)

0.13230 0.511(3) 0.516(2)
0.13330 0.410(4) 0.414(2)
0.13380 0.353(4) 0.356(2)
0.13430 0.283(5) 0.287(3)
0.13480 0.187(8) 0.194(4)

(b) VMD fit parameter mV compared to the free ρ-mass
κ mV mV (T = 0) mρ [18]

0.13230 0.574(11) 0.587(19) 0.623(2)
0.13330 0.520(13) 0.528(17) 0.550(2)
0.13380 0.495(15) 0.501(19) 0.515(3)
0.13430 0.466(18) 0.477(21) 0.485(3)
0.13480 0.431(25) 0.454(43) 0.448(13)

Fig. 1. Esc(p
2
⊥) for different pion masses; lines: continuum dis-

persion relation (12)

of the transverse momentum in Fig. 1. The screening en-
ergies obey the continuum dispersion relation, (12), quite
well. This nicely confirms that lattice artifacts are largely
suppressed since we are working with an improved ac-
tion which only receives corrections in O(a2). The error in
Esc(p⊥) grows with increasing momentum and decreasing
pion mass. Due to large fluctuations, reliable results for the
lowest pion mass could not be obtained at the two highest
momenta.

5 The three-point function
and the vertex function F

For the three-point function, we consider a pseudo-scalar
source at zi = 0, a sink at zf , and a coupling of the photon
at 0< z < zf . As was discussed in [7], for T = 0, the most
reliable method to extract the form factor is the use of sim-
ultaneous fits of the two- and three-point functions. Con-
sequently, this will also be the method used in this case.
In analogy to the zero temperature analysis, we have var-
ied the fit range in both correlation functions to investigate
systematic uncertainties. We found no significant changes
in the ground state parameters.
We carried out our simulations for the five κ values

in (30), corresponding thus to the different screening
masses in Table 1a. Furthermore, we chose three exter-
nal momenta, p2⊥ = 0.039, 0.077 and 0.0193. As can be
seen from our discussion in Sect. 2.2, we do not expect
a dependence on p2⊥ for our specifically chosen kinemat-
ical situation. The data sets for the different transverse
momenta will therefore yield an indication of numerical
instabilities in our results. For the lowest pion mass and
highest p2⊥, fluctuations overwhelmed the data and we did
not extract the parameters of the three-point function.
As shown above, for our kinematics and by considering

the z-component of the current, the resulting matrix elem-
ent takes on a very simple structure with only one single
vertex function F , which depends on Q2 and the screening
mass. In our calculations, we have considered three choices
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of the current operator on the lattice: the conserved cur-
rent, (34), the renormalized local current, (32), and the
improved current, (31). At Q2 = 0, for periodic boundary
conditions, the three-point function calculated with a con-
served current should satisfy the relation [23]

G3(zf , z; p̃, p̃)−G3(zf , z′, p̃, p̃)

G(zf , p̃)
= 1 , (38)

where zf < z
′ <Nσ. In this form, the current operator is in-

serted twice to measure two separate contributions to the
total charge reaching the sink at zf . The first takes into
account the charge from the source reaching the sink by
passing through z. The ‘second insertion’ at z′ accounts for
the charge that leaves the source in the negative z-direction
and arrives at the sink by passing through z′, which is pos-
sible due to the periodic boundary conditions. We have
confirmed that for the conserved current (38) is satisfied to
high accuracy, typically to O(10−4).
For both the local and the improved current we need the

overall renormalization constant ZV ,

ZV = Z
0
V (1+ bVmq) . (39)

We have determined it by demanding that (38) is satis-
fied. Since the additional tensor term in the improved cur-
rent is a total divergence, it does not contribute to the
total charge, and therefore ZV is identical for the local
and improved current. Figure 2 shows the ZV values we
obtain for several κ and p2⊥ values. The higher momenta
are more problematic for the extraction of the vertex func-
tions. They have larger error bars and the extracted ZV
values tend to lie slightly higher than the lower momen-
tum values. As the figure shows, the T = 0.93Tc results
deviate by less than 2% from T = 0 values extracted in [7].
They also have the same linear dependence on the quark
mass. Thus, our values for Z0V as well as bV are in very
good agreement with the non-perturbative determination
of Bhattacharya et al. [24]. The constant cV multiplies
a term that is already linear in a. A variation with T would

Fig. 2. Renormalization constants ZV as function of quark
mass for different T and p⊥

be of higher order, and we use the cV value of [24] for the
vector current, which contributes to the vertex only away
from the forward direction.

5.1 Results for the vertex function F

We now discuss the values for the vertex function we ex-
tracted with the improved current for different photon mo-
menta Q2. At T = 0, it was found that a monopole param-
eterization of the pion charge form factor described the ob-
tained results quite well for the lower Q2 values, a feature
which can be explained by the vector meson dominance
(VMD) model. We investigated if the analogous parame-
terization,

F (Q2,m2sc,T ) =

[
1+
Q2

m2V

]−1
, (40)

wheremV is a fit parameter, also yields a useful description
for the vertex function we extract at T > 0. We therefore
plot 1/F , which should be a straight line for the parameter-
ization to work.
As can be seen in Fig. 3 for two values of the pion

screening mass, our numerical results show that for Q2 up
to 0.4 a monopole fit will work quite well. At higher Q2,
the lighter mass shows a stronger deviation from a straight

Fig. 3. The inverse of the vertex function F as a function of Q2
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line, but with larger error bars as well. When comparing
data from the different transverse momenta sets, we see
that the higher p2⊥ values have larger error bars and for the
lighter mass are more scattered around a straight line.
Figure 4 shows all our results, appropriately averaged

over the different p2⊥ values, together with the monopole
fits. For the lightest pion mass, the fluctuations for the
higher p2⊥ values were too strong to allow for a reliable
extraction of the vertex function at large Q2 values. As
expected, F (Q2) drops off more rapidly as the pion mass
decreases. The fits deviate more strongly from the data at
higher Q2 for the lighter pions. As shown in Table 1b, the
extracted parametermV agrees quite well with the corres-
ponding fit parameter extracted at T = 0. Both lie close
to the free ρ mass obtained from lattice QCD in [18]. This
agreement with mρ gets better as the pion mass decreases
towards the physical value. Our fit at T = 0.93Tc thus in
general supports the simple VMD picture for the low Q2

data also at a temperature just below Tc. A more detailed
look at the function F is taken in Fig. 5. The two different
pion masses show how the difficulties to extract informa-
tion about F increase as the pion mass decreases. However,
within the error bars, both examples again show that there
is no overall significant difference to the form factor F (Q2)
we extracted at T = 0. This is in contrast to most theor-
etical expectations based on effective models. In terms of
the mass parameter mV of our monopole fit, our results
therefore do not support a significant dropping of the vec-
tor mesonmass as T increases to 0.93Tc, at least not for the
state with the lowest screening mass we project out by our
spatial correlators.
By identifying the vertex function F (Q2,msc,T ) at T =

0.93Tc with the form factor of a pion embedded in a heat
bath, we can also translate our findings into statements
about its spatial extension and mean square radius. Fig-
ure 6 shows 〈r2〉 as obtained from the slope of F atQ2 = 0,
using the VMD parameterization. Both the T = 0 and
T = 0.93Tc data lead to the same picture. There is no sig-
nificant difference between the value for 〈r2〉 and in the
dependence on the pion mass for both temperatures. Using
the VMD parametrization and extrapolating the ‘ρ’ mass

Fig. 4. The vertex function for different pion masses. Curves:
fits to the VMD model

Fig. 5. The vertex function F compared with the form factor
at T = 0

mV , linearly in m
2
π, to the physical limit, we arrive at

a value for 〈r2〉 that is about 15% below the experimental
value for a free pion [25]. This small discrepancy could be
due to the quenched approximation. However, Alexandrou
et al. [26] have calculated density–density correlations in

Fig. 6. The pion ‘radius’ at 0.93Tc as a function of its mass
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quenched as well as unquenched QCD at T = 0 and found
only rather small effects for the pion. Recent unquenched
calculations of the free pion form factor itself can be found
in [27, 28].

6 Summary

In this paper, we have presented the first investigation of
the electromagnetic vertex of a pion at finite temperature
by means of numerical simulation. The temperature was
chosen as 0.93Tc, just below the critical temperature for
the transition to the deconfined phase of QCD.
We considered two- and three-point functions for the

pion for various transverse momenta. As the temporal ex-
tent of the lattice is limited by the inverse temperature
we have calculated spatial correlators in the z-direction
to study the dispersion relation and to extract the vertex
functions of a pion embedded in a heat bath. For several
quark masses we confirmed earlier findings that within er-
rors the screening mass at 0.93Tc is the same as the free
pion mass calculated on the lattice. Furthermore, except
for the lightest pion and the largest momentum where er-
rors are large, we could show that the dispersion relation
for the lattice results was sufficiently well described by the
continuum expression.
For the symmetrical kinematical conditions specific-

ally chosen by us, the electromagnetic vertex of the pion
can be described in terms of only a single vertex function
F (Q2,msc), which depends on the square of the photon
four-momentum and the screening mass at the chosen tem-
perature. For T = 0, this function is equal to the free pion
form factor F (Q2). Within error bars, we found that for all
quark masses and all Q2 we considered, the vertex func-
tion agreed with the corresponding form factor at T = 0.
Furthermore, we showed that at low Q2 the vertex func-
tion for T = 0.93Tc is well described by a monopole fit as
suggested by a vector meson dominance model. The mass
parametermV we extracted equals the fit parameter found
earlier at T = 0 within errors. As the quark mass was de-
creased, this parameter was seen to approach the lattice
value mρ for a ρ meson at T = 0. The simple vector meson
dominance model thus remains a good description of the
low Q2 results also at a temperature close to Tc.
Our results on the pion vertex at low Q2 can be trans-

lated into a mean square radius. Most effective models
predict a pion radius which gradually increases with tem-
perature. We do not find any significant change from the
situation at T = 0. This may be due to the fact that, con-
trary to these models, our lattice results concern screening
states. However, available lattice results have so far not
shown appreciable differences between spatial and tempo-
ral pion two-point functions up to temperatures as high
as investigated here and our findings based on the spatial
three-point correlators may be more general.
To conclude, our results for the screening masses at

T = 0.93Tc confirm what earlier lattice studies of the pion
had already shown. Our main new finding is that there
is also no significant change in the vertex function F for

screening states, a quantity that in contrast to the mass
is directly sensitive to the internal structure of the pion.
It will of course be interesting to continue these studies
of the three-point functions to higher temperatures to see
whether significant changes occur when Tc is crossed. Such
studies are presently in progress [29].
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11. M. Lüscher, S. Sint, R. Sommer, P. Weisz, U. Wolff, Nucl.
Phys. B 491, 323 (1997) [hep-lat/9609035]

12. G. Martinelli, C.T. Sachrajda, A. Vladikas, Nucl. Phys. B
358, 212 (1991)
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